Math is not easy to teach or learn. So, teachers use a variety of strategies to boost their students’ numeracy skills as they progress through math education.

But some of those approaches could be unproductive, contended Dr. Juli Dixon, Professor of Mathematics Education at the University of Central Florida, in a recent edWebinar sponsored by Houghton Mifflin Harcourt Mathematics. She described standard practices that can derail rather than support mathematical reasoning, and offered alternative methods that would benefit students far more.

**Embracing the messiness of math education**

The beauty of math, emphasized Dr. Dixon, is that it calls for critical thinking, making mistakes, problem solving, peer discussion, all part of the discovery process. But teachers often rely on methods that do not effectively drive students’ math education in this capacity. Dr. Dixon shared six recognized methods that may work in other content areas but fall short in the math classroom.

**The six math education practices to reconsider**

**1. Conceptual lessons**

Posting learning objectives and goals or essential questions at the start of a lesson is standard. While designed to let students know what they are supposed to accomplish, such “goalposts” tend to send a message of disengagement instead, noted Dr. Dixon.

Math is not easy to teach or learn. So, teachers use a variety of strategies to boost their students’ numeracy skills as they progress through math education.

But some of those approaches could be unproductive, contended Dr. Juli Dixon, Professor of Mathematics Education at the University of Central Florida, in a recent edWebinar sponsored by Houghton Mifflin Harcourt Mathematics. She described standard practices that can derail rather than support mathematical reasoning, and offered alternative methods that would benefit students far more.

Embracing the messiness of math education

The beauty of math, emphasized Dr. Dixon, is that it calls for critical thinking, making mistakes, problem solving, peer discussion, all part of the discovery process. But teachers often rely on methods that do not effectively drive students’ math education in this capacity. Dr. Dixon shared six recognized methods that may work in other content areas but fall short in the math classroom.

The six math education practices to reconsider

1. Conceptual lessons

Posting learning objectives and goals or essential questions at the start of a lesson is standard. While designed to let students know what they are supposed to accomplish, such “goalposts” tend to send a message of disengagement instead, noted Dr. Dixon.

Let’s say the goal of a math lesson on adding multi-digit numbers with regrouping is for students to regroup ones and tens. The solution has already been stated. There’s no room for student discovery, taking away the “ah-ha” moment when they figure out how to regroup through trial and error. There’s no room for experimentation, making mistakes and revisiting strategies to find a solution.

Dr. Dixon said teachers should target the learning goal as an instructional guide to support students as they muddle through a process, and think about the questions students should answer at the end of the lesson based on the goal. But they should not give away the answer from the get-go.

2. Gradual release of responsibility

“Sometimes,” Dr. Dixon explained, “we talk about gradual release of responsibility as I do, we do, you do, and so if that’s expected in every lesson every day, you should be asking this important question: Is that appropriate in mathematics? And your answer should be no, it’s not in every lesson every day.”

Take the regrouping lesson. If the process is modeled, then the teacher is telling students how to solve the problem. They are not doing the sense making necessary to take on the challenge.

Gradual release of responsibility is not a no-no across the numeracy board. Dr. Dixon said that it is productive for teaching a procedure, such as long division. It’s what learners will then use to solve problems and make sense of the process, allowing them to build their discovery as they test different solutions.

3. Scaffolding

Dr. Dixon recommended rethinking the purpose of scaffolding, typically used to differentiate learning. She explained that typically, it is a just-in-case measure to ensure students limit errors. She argued this is counter to what mathematical reasoning requires: the opportunity to make sense of context and determine the operation to be performed. Making errors is crucial to that inquiry.

source: Read More, eSchool News